mode of operation
MATERIALS AND METHODS
The procedure as used by Mr. Humble follows: A 28% stock solution of 80% (technical grade) sodium chlorite (NaClO2) is prepared. The remaining 20% is a mixture of the usual excipients necessary in the manufacture and stabilization of sodium chlorite (NaClO2) powder or flake. Such are mostly sodium chloride (NaCl) ~19% , sodium hydroxide (NaOH) <1% , and sodium chlorate (NaClO3) <1% . The actual sodium chlorite (NaClO2) present is therefore 22.4%. Using a medium caliber dropper (25 drops per cc), the usual administered dose per treatment is 6 to 15 drops. In terms of milligrams of sodium chlorite (NaClO2), this calculates out to 9mg per drop or 54mg to 135mg per treatment. Effectiveness is enhanced, if prior to administration the selected drops are premixed with 2.5 to 5 cc of table vinegar or lime juice or 5-10% citric acid and allowed to react for 3 minutes. The resultant solution is always mixed into a glass of water or apple juice and taken orally. The carboxylic acids neutralize the sodium hydroxide (NaOH) and at the same time convert a small portion of the chlorite (ClO2-) to its conjugate acid known as chlorous acid (HClO2) . Under such conditions the chlorous acid (HClO2) will oxidize other chlorite anions (ClO2-) and gradually produce chlorine dioxide (ClO2). Chlorine dioxide (ClO2) appears in solution as a yellow tint which smells exactly like elemental chlorine (Cl2) . The above described procedure can be repeated a few hours later if necessary. Considerably lower dosing should be applied in children or in emaciated individuals scaled down according to size or weight. The diluted solution can be taken without food to enhance effectiveness but this often causes nausea. Drinking extra water usually relieves this. Nausea is less likely to occur if food is present in the stomach. Starchy food is preferable to protein as protein quenches chlorine dioxide (ClO2) . Significant amounts of vitamin C (ascorbic acid) must not be present at any point in the mixtures or else this will quench the chlorine dioxide (ClO2) and render it ineffective. For the same reason antioxidant supplements should not be taken on the day of treatment. Other side effects reported are transient vomiting, diarrhea, headache, dizziness, lethargy or malaise.
EXPLORING BENEFITS
I first learned of Jim Humble's remarkable discovery in the fall of 2006. That sodium chlorite (NaClO2) or chlorine dioxide (ClO2) could kill parasites in vivo seemed immediately reasonable to me at the onset. It is well known that many disease causing organisms are sensitive to oxidants. Various compounds classifiable as oxides of chlorine such as sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) are already widely used as disinfectants. What is novel and exciting here is that Mr. Humble's technique seems: 1) easy to use, 2) rapidly acting, 3) successful, 4) apparently lacking in toxicity, and 5) affordable. If this treatment continues to prove effective, it could be used to help rid the world of one of the most devasting of all known plagues. Especially moving in me is the empathy I feel for anyone with a debilitating febrile illness. I cannot forget how horrible I feel whenever I have caught influenza. How much more miserable it must be to suffer like that again and again every 2 to 3 days as happens in malaria. Millions of people suffer this way year round. 1 to 3 million die from malaria every year mostly children. Thus motivated I sought to learn all I could about the chemistry of the oxides of chlorine. I wanted to understand their probable mechanisms of toxicity towards the causative agents of malaria (Plasmodium species). I wanted to check available literature pertaining to issues of safety or risk in human use.
OXIDANTS AS PHYSIOLOGIC AGENTS
Oxidants are atoms or molecules which take up electrons. Reductants are atoms or molecules which donate electrons to oxidants. I was already very familiar with most of the medicinally useful oxidants. I had taught at numerous seminars on their use and explained their mechanisms of action on the biochemical level. Examples are: hydrogen peroxide , zinc peroxide , various quinones (e.g. benzoquinone , rhodizonic acid) , various glyoxals (e.g. glyoxal , methyl glyoxal , ozone , ultraviolet light, hyperbaric oxygen , benzoyl peroxide , anodes, artemisinin , methylene blue , allicin , iodine and permanganate . Some work has been done using dilute solutions of sodium chlorite (NaClO2) internally to treat fungal infections, chronic fatigue, and cancer; however, little has been published in that regard.
Low dose oxidant exposure to living red blood cells induces an increase in 2,3-diphosphoglycerate levels inside these cells. This attaches to hemoglobin (Hb) in such a way that oxyhemoglobin (HbO2) more readily releases oxygen (O2) to the tissues throughout the body.
Hyperbaric oxygenation (oxygen under pressure):
is a powerful detoxifier against carbon monoxide;
is a powerful support for natural healing in burns, crush injuries, and ischemic strokes; and
is an effective aid to treat most bacterial infections.
Taken internally, intermittently and in low doses many oxidants have been found to be powerful immune stimulants. Sodium chlorite (NaClO2) acidified with lactic acid as in the product "WF10" has similarly been shown to modulate immune activation. Exposure of live blood to ultraviolet light also has immune enhancing effects. These treatments work through a natural physiologic trigger mechanism, which induces peripheral white blood cells to express and to release cytokines. These cytokines serve as a control system to down-regulate allergic reactions and as an alarm system to increase cellular attack against pathogens.
Activated cells of the immune system naturally produce strong oxidants as part of the inflammatory process at sites of infection or cancer to rid the body of these diseases. Examples are: superoxide (*OO-) , hydrogen peroxide (H2O2) , hydroxyl radical (HO*) , singlet oxygen (O=O) and ozone (O3) . Another is peroxynitrate (-OONO) the coupled product of superoxide (*OO-) and nitric oxide (*NO) radicals.
-OO* + *NO -> -OONO
Yet another is hypochlorous acid (HOCl) the conjugate acid of sodium hypochlorite (NaClO) . The immune system uses these oxidants to attack various parasites.
OXIDES OF CHLORINE AS DISINFECTANTS
All bacteria have been shown to be incabable of growing in any medium in which the oxidants (electron grabbers) out-number the reductants (electron donors). Therefore, oxidants are at least bacteriostatic and at most are bacteriocidal. Many oxidants have been proven useful as antibacterial disinfectants. Hypochlorites (ClO-) are commonly used as bleaching agents, as swimming pool sanitizers, and as disinfectants. At low concentrations chlorine dioxide (ClO2) has been shown to kill many types of bacteria, viruses and protozoa. Ozone (O3) or chlorine dioxide (ClO2) are often used to disinfect public water supplies or to sanitize and deodorize waste water. Sodium chlorite (NaClO2) or chlorine dioxide (ClO2) solutions are used in certain mouth washes to clear mouth odors and oral bacteria. Chlorine dioxide (ClO2) sanitizes food preparation facilities. Acidified sodium chlorite is FDA approved as a spray in the meat packing industry to sanitized meat. This can also be used to sanitize vegetables and other foods. Farmers use this to cleanse the udders of cows to prevent mastitis, or to rid eggs of pathogenic bacteria. Chlorine dioxide (ClO2) can be used to disinfect endoscopes. Oxidants such as iodine , various peroxides , permanganate and chlorine dioxide can be applied topically to the skin to treat infections caused by bacteria or fungi.
MALARIA IS OXIDANT SENSITIVE
From November 2006 through May of 2007 I spent hundreds of hours searching biochemical literature and medical literature pertaining to the biochemistry of Plasmodia. Four species are commonly pathogenic in humans namely: Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae. What I found was an abundance of confirmation that, just like bacteria, Plasmodia are indeed quite sensitive to oxidants. Examples of oxidants toxic to Plasmodia include: artemisinin , artemether , t-butyl hydroperoxide , xanthone , various quinones (e.g. atovaquone , lapachol , beta-lapachone , menadione ) and methylene blue .
TARGETING THIOLS
Like bacteria, fungi and tumor cells, the ability of Plasmodia to live and grow depends heavily on an internal abundance of reductants. This is especially true regarding thiol compounds also known as sulfhydryl compounds (RSH) . Thiols as a class behave as reductants (electron donors). As such they are especially sensitive to oxidants (electron grabbers).
Thiols (RSH) such as glutathione and other sulfur compounds are reactive with sodium chlorite (NaClO2) and with chlorine dioxide (ClO2) . These are the very agents present in Mr. Humble's solution. Possible products of oxidation of thiols (RSH) using various oxides of chlorine are: disulfides (RSSR) , disulfide monoxides (RSSOR) , sulfenic acids (RSOH) , sulfinic acids (RSO2H) and sulfonic acids (RSO3H) .
None of these can support the life processes of the parasite. Upon sufficient removal of the parasite's life sustaining thiols (RSH) by oxidation, the parasite rapidly dies. A list of thiols (RSH) upon which survival of Plasmodium species heavily depend includes: dihydrolipoic acid , coenzyme A and acyl carrier protein , glutathione , glutathione reductase, glutathione-S-transferase, peroxiredoxin, thioredoxin, glutaredoxin, plasmoredoxin, thioredoxin reductase, falcipain and ornithine decarboxylase.